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Abstract
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1. Introduction

We begin by considering the equality constrained optimization problem

minimize f(z)

(L.1)

subject to g(z)==0,
where f:R" — R and ¢:R® - R"™(m < n). Along with problem (1.1) we consider the Lagrangian
I(z,\)=f(2)+XTg(z), a local solution z, and its associated multiplier A, (i.e. X, is such that

v l(z.,,X,) = 0).

On occasion we will denote an operator evaluated at z; or z, by deleting the argument but
instead using the subscript k or * as the case may be, e.g., g. =g¢(z.) or fy = f(z;). We also

denote the Hessian of the Lagrangian at (z,,X.) by w, (i.e. w, = 2(2.,).)).

By a successive quadratic programming (SQP) quasi-Newton method for problem (1.1) we

mean the iterative procedure

Ty =2 +8 k=01, - (1.2)

where s solves the quadratic program

minimize vffs +% s Bs (1.3)
subject to vods +gr =0 .

for given B;.

In the analysis of convergence rates for the SQP method the following assumptions are stan-

dard:

Al: f, g € CD) where D is an open neighborhood of z,,
A2 7, €D and {x;} converges to z.,

A3: v9(z) has full rank Y z€D

Ad: nTw. >0 \/ ns£0 such that wgln=0,

A5: nT Byn >0 \/ 7540 such that wgfn=0and V\k



Assumption A4 is second order sufliciency for problem (1.1) and Assumption A5 is second order
sufficiency for the SQP subproblem (1.3). It follows that our subproblem is convex, has a unique
solution and our iterative procedure is well-defined. Moreover, for £ € D Assumption A3 allows

us to consider the projection operator

P(z) = I-vg(z)(vy(z) vg(z)) ' ve(e) . (14)
Clearly P(z) projects onto the null space of g(z)?.
Suppose that {z;} has been generated by the SQP method. Boggs, Tolle and Wang [1]

show that, under the assumption that the convergence of {z;} to z. is g-linear, the convergence

will also be g-superlinear

| 251 -2.]]
lim =0 1.5
koo || 2p—2. ]| (1.5)
if and only if
PLB.—w,
lim || Py [Bx Ji || —0. (1.6)
koo H s ]

This characterization result is a nice extension to constrained optimization of the Dennis-Moré€ [2]
characterization for unconstrained optimization. Recently, Fontecilla, Steihaug and Tapia [4]
derived the Boggs-Tolle-Wang characterization without the g¢-linear convergence assumption.
Even more recently Nocedal and Overton [7] also derived this characterization without the g¢-

linear convergence assumption.

The following statements serve to motivate the present work. All three previous derivations
of the Boggs-Tolle-Wang characterization leave something to be desired. The Boggs, Tolle and
Wang [1] derivation is neither short nor direct and uses the unnecessary assumption of g-linear
convergence; however we emphasize that it was the first derivation. The Fontecilla, Steihaug and
Tapia [4] derivation is lengthy and not direct. This is to be expected since they solve a more
difficult problem. Specifically they obtain the Boggs-Tolle-Wang characterization as a special case
of a characterization result for a more general class of quasi-Newton methods than those con-
sidered here. Members of their class need not give iterates which satisfy linearized constraints.

Nocedal and Overton [7] give a short and direct derivation. However, their derivation is based on



an existence theorem and a differentiation formula from differential geometry. The theorem and
the formula are due to Goodman [5] and are nontrivial. It is not clear how their derivation could
be given in a complete manner in an elementary presentation. The derivation of the Boggs-

Tolle-Wang characterization was not the principal issue of these latter two papers.

In Section 2 we present several formulations which are equivalent to the SQP quasi-Newton
formulation. In Section 3 we use one of these equivalent formulations and the Dennis-Moré€ char-
acterization to derive the Boggs-Tolle-Wang characterization. Concluding remarks are given in

Section 4.

2. Formulations Equivalent to SQP

The material in this section is taken from Tapia [10]. The reader interested in motivation

and further detail is referred to that paper.

Extended System Formulation

If we apply the first order necessary conditions to the quadratic programs (1.3) we see that

the SQP quasi-Newton step s and its associated multiplier A can be obtained from the following

linear system:

Bis + gk = -V f (2.1a)
T . _ (2.1b)

Vs G - .
By Assumption A5 we know that (1.3) is a convex program. It follows that in this case the first
order necessary conditions are also sufficient conditions. Also from A5 we know that s is unique.
This means that the quadratic program (1.3) and the linear system (2.1) determine the same s

and it is necessarily unique.

Multiplier Substitution Formulation

We will show that determining s from (2.1) is equivalent to determining s from the linear

system



(PeBy +gx v9i)s = ~ Py I fr + 0k 91 (2.2)

Toward this end observe that if we define

N =-(vod Vo) Vel (Bes + /i), (2.3)

then we can write

Py[Bys + /i) = Bes +fi + g X . (24)
Suppose that s has been obtained from (2.1). Multiplying (2.1a) by Py, recalling that P,yg; =0
and using (2.1b) we see that s satisfies (2.2). Now, suppose s satisfies (2.2). Multiplying (2.2) by
vg¢f and recalling that V9fP, =0 we see that (2.1b) is satisfied. It follows that the left-hand
side of (2.4) is zero; hence the right-hand side of (2.4) is zero. This means that (s,\”) is the

unique solution of (2.1).

3. Derivation of the Boggs-Tolle-Wang Characterization

We begin with several simple observations. If P is given by (1.4) then

P(z)v/(z) = vf(z)+vg(z)\(2) (3.1)

where

Mz) = -(vyg(2)"wg(2))'vg(2) v/ (=) . (3.2)
It follows from (3.1) and (3.2) that if

F(z) = P(z) v/ (z) + ve(z)g(2), (3.3)
then
F'(z.) = P.w, +vg.vg7 . (3.4)
Thus, we can interpret (2.2) (and therefore SQP) as a quasi-Newton method applied to the non-
linear system F'(z)=0 where F is given by (3.3) and the approximation to the Jacobian F ’(z;) is
given by Py B, + g vgf. Moreover, if F’(x.) is singular, then by the equivalence between (2.1)
and (2.2) it follows that the matrix

B. Vyt]
vel 0



is singular. This in turn implies that the quadratic program (1.3) with #;, = 2. and By = w, does

not have a unique solution. This statement contradicts Assumptions A3 and A4.

Now, since F € C'(D) and F’(z.) is nonsingular, the Dennis-Mor¢ [2] characterization

applies and (2.2) (therefore SQP) generates iterates which are g-superlinearly convergent if and

only if

li{n || [PeBy +Var v o —(Pow, + 7 9.79 s || /18 || = 0. (3.6)

Finally, by adding and subtracting Pyw. in (3.6) we see that (3.6) is equivalent to the Boggs-

Tolle-Wang condition (1.6).

4. Summary and Concluding Remarks

In this note we have presented what we consider to be a short, direct and self-contained
derivation of the Boggs-Tolle-Wang characterization of g-superlinear convergence for quasi-
Newton methods for constrained optimization. While we have stated that the three previous
derivations (Boggs, Tolle and Wang [1]; Fontecilla, Steihaug and Tapia [4] and Nocedal and Over-
ton [7]) leave something to be desired, we quickly add that the present work was strongly
influenced by these three papers. Indeed the basic idea that led to the present derivation was to
attempt to parallel the Nocedal-Overton derivation using a formulation of the quasi-Newton
method which possessed the attribute that all necessary differentiations could be obtained in a

straightforward manner. As we have seen, one of the formulations suggested by Tapia [10]

possesses this property.

The authors acknowledge comments made on an earlier draft of this paper by R.H. Byrd,

J.E. Dennis, H. Martinez, J.J. Mor¢, T. Steihaug, and especially M. Overton.
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